What are you doing for your recurrent cancer patients?

Hyperthermia is a therapy used to heat tumors. Research has shown that heat can damage cancer cells while also increasing the effect of radiation therapy in treating some tumors that are recurrent or progressive despite conventional therapy.

While it has been known for hundreds of years that fevers can kill cancer cells, only recently has technology been developed that can control and focus heat specifically on tumors. Hyperthermia treatments are typically given in Radiation Oncology departments between one to three times a week either before or after radiation therapy. Each treatment session lasts approximately one hour.

Indications for Use

The BSD-500 is indicated for use alone or in conjunction with radiation therapy in the palliative management of certain solid surface or subsurface malignant tumors (i.e., melanoma, squamous or basal-cell carcinoma, adenocarcinoma, or sarcoma) that are progressive or recurrent despite conventional therapy. A complete FDA approved indications for use and description of all adverse effects are included on the insert.

BSD-500

- No shielding room needed
- Portable
- FDA Approved for palliative treatment of certain tumors
- Delivers both superficial and interstitial hyperthermia

BSD-500 used in Clinical Studies on recurrent and progressive:

Melanoma

Squamous or basal-cell carcinoma

Sarcoma

Adenocarcinoma

Clinical Studies using Pyrexar’s hyperthermia systems in conjunction with radiation therapy have shown that 37.4% of patients had a complete tumor regression, an additional 24.5% had a greater than 50% tumor regression and a total of 83.7% of patients had some tumor regression after hyperthermia therapy. The primary types of tumors included in this study were recurrent chest wall, recurrent head and neck, recurrent melanoma, and recurrent sarcoma.

Hyperthermia in conjunction with radiation therapy

- **Complete regression:** 37.4%
- **Greater than 50% regression:** 61.9%
- **Some regression:** 83.7%

Although hyperthermia has the potential for producing a variety of adverse effects, those regularly observed during clinical studies have been limited to the direct effects of heating upon tissue and indirect effects related to the tumor including burns (9.9%), pain (8.4%), ulceration (3.6%), and infection (1.8%).
BSD-500 Hyperthermia System

Product Descriptions

BSD-500 4
4 Channel Interstitial
To include:
4 Temperature sensors
16 Interstitial applicators

4 Channel Interstitial/Superficial
To include:
1 MA 100 Applicator
1 MA 151 Applicator
4 Temperature Sensors
16 Interstitial applicators

BSD-500 8
8 Channel Interstitial
To include:
8 Temperature sensors
24 Interstitial applicators

8 Channel Interstitial/Superficial
To include:
1 MA 100 Applicator
1 MA 151 Applicator
1 MA 120 Applicator
8 Temperature Sensors
24 Interstitial Applicators

Equipment Rack, Computer System, Microwave Power Generator

Touch Screen Monitor

Superficial Applicator Arm

Microwave Interstitial Applicator/Thermometry Connection Panel

Water Circulation System
Superficial Applicators
3 applicators are available to treat a range of tumor sizes and locations.

<table>
<thead>
<tr>
<th>Applicator Type</th>
<th>Model Number</th>
<th>Recommended Freq (MHz)</th>
<th>Typical Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side-loaded waveguide</td>
<td>MA-100</td>
<td>915</td>
<td>100</td>
</tr>
<tr>
<td>Mini dual-ridge waveguide</td>
<td>MA-151</td>
<td>915</td>
<td>40</td>
</tr>
<tr>
<td>Side-loaded waveguide</td>
<td>MA-120</td>
<td>915</td>
<td>250</td>
</tr>
</tbody>
</table>

MA-120: side-loaded wave guide applicator has an 18 x 24 cm aperture and a heating pattern of approximately 12.5 x 19.5 cm by 2.5 cm deep.

MA-151: mini-dual ridge wave guide applicators have an aperture of 4 x 5 cm and individual heating patterns approximately 2.5 x 2.5 cm by 2 cm deep. Advanced annular phased array principles create a central focusing of energy, which significantly overcomes the penetration losses of the energy radiated into the body.

MA-100: side loaded wave guide applicators have a 10 x 13 cm aperture and a heating pattern approximately 8 x 10 cm by 2.5 cm deep.
Interstitial Hyperthermia

Interstitial hyperthermia delivers the heat directly to the site of the tumor. Interstitial hyperthermia uses up to 24 small microwave antennas (1.2 mm in diameter) placed in the tumor. Temperature sensors (1.1 mm in diameter) measure the temperatures for treatment control. The microwave power delivered to the antennas can be adjusted in amplitude and phase to conform the heating pattern to the tumor.

Interstitial Applicators

The semi-rigid MA-251 microwave interstitial applicators can be inserted into 15.5 gauge (5 French) radiation implant catheters. The heating pattern is ellipsoidal and approximately 4.5 cm in length along the applicator shaft with heating to the applicator tip.

Different heating patterns can be created using arrays of up to 24 applicators with 8 independent microwave power channels. Both asynchronous and electronically controlled synchronous phase modes are provided.

Hyperthermia and Brachytherapy

The BSD-500 hyperthermia system can be used for combined therapy with a brachytherapy system. Interstitial antennas fit into certain brachytherapy catheters. The operator simply inserts antennas to heat the tumor before or after the afterloading process takes place (usually within 30 minutes before or after the treatment). A typical heat treatment might achieve an intratumoral temperature of 42.5°C, sustained for 60 minutes or the equivalent thereof.

<table>
<thead>
<tr>
<th>Applicator Type</th>
<th>Model Number</th>
<th>Recommended Freq (MHz)</th>
<th>Typical Power(W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interstitial antenna</td>
<td>MA-251</td>
<td>915</td>
<td>10</td>
</tr>
<tr>
<td>Temperature sensor</td>
<td>TP-100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Treatment Planning Software

Performing interstitial hyperthermia requires the use of the BSD-500 built-in treatment planning program. Using this software, the size and shape of the tumor can be traced on a grid on the computer screen. Treatment plans can then be made by simulating the placement of antennae in and around the tumor. The power and phase of each channel can be set and adjusted on the screen. Each change in placement, power or phase will display the new simulated heating pattern.

- Trace tumor and position applicators
- Calculate energy distribution pattern
- Adjust phase and power to achieve desired heating pattern
- Transfer settings to hyperthermia treatment screen.
The BSD-500 Hyperthermia System delivers therapeutic heat (hyperthermia) to certain surface or subsurface malignant tumors (squamous or basal-cell carcinoma, adenocarcinoma, or sarcoma) by the external or interstitial application of electromagnetic energy, and monitors the temperature of target and surrounding tissues by means of invasive temperature probes. In response to an operator-designated control probe, the BSD-500 Hyperthermia System automatically adjusts power to maintain the target temperature, which typically is 42-44°C. The BSD-500 Hyperthermia System also automatically limits power to prevent any detected temperature from exceeding the operator-set maximum, which cannot be greater than 59°C.

Tissue absorption of electromagnetic energy causes heat by molecular excitation. Living tissue dissipates accumulated thermal energy principally through transport by blood perfusing the tissue. Solid malignant tumors of significant size have less blood perfusion than surrounding normal tissue. For a given absorbed thermal dose, the reduced ability to dissipate heat causes tumor tissue to reach higher temperatures than normal tissue. Therefore, absorbed electromagnetic radiation will preferentially heat tumors present in normal tissue and cause them to reach higher temperatures than the normal surrounding tissue. Tumors heated repeatedly to higher temperatures (hyperthermia) for times approaching an hour sometimes exhibit regression and necrosis [Song, C. W., “Physiological Factors in Hyperthermia of Tumors” in Physical Aspects of Hyperthermia, G. H. Nussbaum, ed. American Institute of Physics (American Association of Physicists in Medicine, Medical Physics Monograph No. 8), New York, NY, 1982, p. 43].

The BSD-500 Hyperthermia System consists of the following components:

1. A set of microwave applicators for local therapy, as listed in the following table, where "MHz" signifies Megahertz and "W" signifies Watts.

<table>
<thead>
<tr>
<th>Applicator Type</th>
<th>Model</th>
<th>Recommended Typical Frequency (MHz)</th>
<th>Power (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side-loaded waveguide</td>
<td>MA-100</td>
<td>915</td>
<td>100</td>
</tr>
<tr>
<td>Mini-dual-loaded waveguide</td>
<td>MA-151</td>
<td>915</td>
<td>40</td>
</tr>
<tr>
<td>Flexible interstitial coaxial</td>
<td>MA-251</td>
<td>915</td>
<td>20</td>
</tr>
<tr>
<td>Side-loaded waveguide</td>
<td>MA-120</td>
<td>915</td>
<td>250</td>
</tr>
</tbody>
</table>

2. A set of non-perturbing, electro magnetically insensitive temperature probes.

3. An operator console containing computer controls to obtain and display data from the temperature probes and to condition the power output of the applicators, and means to display and record relevant patient treatment parameters.

4. Various accessories, including blind end catheters for the insertion of probes a probe calibration bath, a coupling and cooling water bolus system, a radiation leakage monitor, and various patient equipment and support such as an optional patient couch.

INDICATIONS FOR USE

The BSD-500 Hyperthermia System is indicated for use alone or in conjunction with radiation therapy in the palliative management of certain solid surface and subsurface malignant tumors (e.g., melanoma, squamous or basal-cell carcinoma, adenocarcinoma, or sarcoma) that are progressive or recurrent despite conventional therapy.

PROCEDURE FOR ADMINISTRATION OF HYPERTHERMIA IN CONJUNCTION WITH IONIZING RADIATION THERAPY

The standard therapy regimen for hyperthermia in conjunction with ionizing radiation therapy is a total of 10 hyperthermia treatments delivered twice per week at 72-hour intervals, with each heat treatment preceded or followed by a standard prescribed dose of ionizing radiation within 30 minutes of the heat treatment. During each heat treatment, an intratumoral temperature of 42.5°C sustained for 60 minutes, or the equivalent thereof, entire course of treatment is 600, expressed in Thermal Equivalent Minutes (TEM) equal to 42.5°C, as calculated during treatment by the BSD-500 Hyperthermia System.

CONTRAINDICATIONS

Because the patient’s ability to detect pain is an essential safety mechanism, hyperthermia is contraindicated in patients whose pain response has been significantly decreased by any means (previous surgery or ionizing radiation therapy, regional or general anesthetic, or other condition).

Since excessive heating of normal tissue is prevented by normal blood perfusion, it is imperative that adequate circulation be present and maintained in all tissues within the heating field. Treatment with the BSD-500 Hyperthermia System is contraindicated in patients having known decrease in circulation in the heated area produced by any means (i.e., vasocostrictive drugs, DIC, ischemia or other cause).

Because electromagnetic radiation from the applicators of the BSD-500 Hyperthermia System may interfere with the operation of an electronic device, hyperthermia treatments are contraindicated in patients with cardiac pacemakers.

RESTRICTIONS

The sale, distribution, and use of the BSD-500 Hyperthermia System are restricted to prescription use.

The BSD-500 Hyperthermia System is to be used only by qualified operators upon the prescription and under the supervision of a physician who is experienced in clinical hyperthermia.

WARNINGS

Hyperthermia treatment can be safely and effectively administered only after careful placement of temperature probes as described in the Reference Manual and with alert monitoring of tissue temperatures during treatment.

Hyperthermia treatment presents a potential safety hazard in patients whose pain response has been decreased because of disease, previous surgery, ionizing radiation therapy, chemotherapy, or general or regional anesthesia.

The electromagnetic energy from microwave applicators may interfere with the operation of the cardiac pacemakers or other implanted electronic devices.

Large thermal doses (a continued elevation of moderately high temperature or a short extreme elevation of temperature) in normal tissues situated in the vicinity of the treated tumor or between the tumor and the body surface may result in regions of thermal aseptic necrosis that require medical intervention and that may not be apparent on inspection of the skin.

Treatment of tumors located in the neck and head may cause inadvertent heating of thermoregulatory centers located in the brain stem and induce general thermoregulatory response exceeding the patient’s compensatory capabilities.

PRECAUTIONS

Adhere to recommended procedures for temperature probe placement and selection of control probe to minimize the probability of excessive temperature in normal tissue or of inadequate temperature in the tumor.

Observe strict adherence to aseptic techniques during the invasive placement of catheters to avoid localized infections, and instruct patients in the daily care of indwelling catheters and probe sites to prevent sepsis.

To ensure accurate temperature monitoring during treatments, verify calibration of temperature probes daily or as used.

Adhere to recommended applicator placement and bolusing practices to reduce the likelihood of surface burns and blistering from the subsequent delivery of therapeutic heat.

In patients with severely compromised pain response, monitor closely other physiological indicators of excessive heat delivery.

Monitor closely patients with metallic implants (joint prostheses, dental braces, etc.) during treatment because such metal objects may be excessively (and preferentially) heated.

ADVERSE REACTIONS

SIDE EFFECTS Although hyperthermia has the potential for producing a variety of adverse effects, those actually observed have been limited to direct effects of heating upon tissue and indirect effects related to tumor necrosis. Statistical analysis of clinical data obtained in Pyrexial Medical studies has provided the following approximate figures for hyperthermia in general:

Burns. Patients have experienced in 9.7% of tumor sites studied, surface burns and blistering in the area of the delivery of therapeutic heat by local microwave applicators of the BSD-500 Hyperthermia System. Adherence to recommended applicator placement techniques and bolusing practices greatly reduces the number of incidents.

Pain. Patients have experienced, in 8.4% of tumor sites studied, localized and temporary pain in the area of, and contiguous to, the therapeutic heat by local microwave applicators of the BSD-500 Hyperthermia System. The use of surface cooling techniques can diminish this pain.

Ulceration. Patients have experienced, in 3.6% of tumor sites studied, ulceration from rapid tumor necrosis following successful hyperthermia treatment with the BSD-500 Hyperthermia System. Such ulceration may produce both fever through toxemia and patient discomfort through drainage and bleeding. Infection. Patients have experienced, in 1.8% of tumor sites studied, local and systemic infections resulting from the placement of the temperature probes of the BSD-500 Hyperthermia System and from the ulceration related to rapid tumor necrosis. These infections have generally been local.

POTENTIAL ADVERSE HEALTH EFFECTS OF THE DEVICE

Hyperthermia has the potential for producing the conditions listed below, as a result of the delivery of therapeutic heat or of exposure to electromagnetic radiation. However, none of these adverse reactions was observed during the clinical investigation of local hyperthermia.

Cataracts. Inadvertent heating of the eye may occur during treatment of tumors in the head or neck. A single high dose of microwave radiation or repeated exposure over a long period of time may result in cataract formation which may not be observable for several weeks. [Clearly, S. F., “Microwave Cataractogenesis” in Proceedings of the IEEE 68: 4953.]

Male Sterility. A single high dose of microwave radiation to the testes, or testicular heating for a prolonged period of time may result in male sterility (i.e., vasoconstrictive drugs, DIC, ischemia or other cause). [Murca, G.J., E.S. Ferris, and F.L. Buchta. “A Study of Microwave Radiation of the Rat Testis” in Biological Effects of Electromagnetic Waves, C.C. Johnson and M.L. Shore, eds. HEW publ. (FDA 77-8010). Washington, D.C., 1976, pp. 484-494.]

Exacerbation of pre-existing disease. Patients having borderline cardiomyopathy function secondary to coronary atherosclerosis, emphysema, or other conditions, may not be able to tolerate the additional systematic stress of extensive or prolonged hyperthermia.

Enhanced drug activity. Elevated temperatures may be expected to alter the pharmacologic activity of some drugs, with unpredictable results. Altered vascular perfusion may dramatically aect the local effects of systemic or infused drugs.

Thermal Stress. Significantly increasing the core temperature of the body or overheating the thermal regulatory center in the hypothalamus can result in thermal stress exceeding the patient’s compensatory mechanisms. Reliable prediction of the consequences of thermal stress in patients with cardiovascular impairment is not possible. Signs of consequences of thermal shock or of local brain overheating may appear after several (up to 24) hours.

REFERENCES

4. American Institute of Physics (American Association of Physicists in Medicine, Medical Physics Monograph No. 8), New York, NY, 1982, p. 43.

